FY-2C/2D GSICS Status Report from CMA's GPRC

Xiuqing Hu, Peng Zhang, Yong zhang, Zhiguo Rong, Yuan Li

National Satellite Meteorological Center (NSMC)/CMA

GDWG/GRWG Meeting Jan 28-30, 2009

FY-2C/2D Experimental Operation using GSICS GEO-LEO Baseline Algorithm in CMA

- Applicability modification for FY-2C/2D Based on GSICS Geoleov2 source codes
- Modified the GEO access module for FY-2C/2D L1B format and Read the Normal Disk image geolocation data of these two satellites
- Modified the SRF files into FY-2C/2D
- Debug, compile and Link at eclipse intel Fortran environment on the platform Ubantu Linux system
- Download AIRS data of FY-2C/2D near Nadir from Nov., 2007 to Nov., 2008
- FY-2C/2D IR1, IR2,IR3(WV) bands Experimental running and output collocation results regression and comparison analysis for one year
- FY-2C/2D IR bands' calibration coefficient drift trend and mechanism analysis during one year

Modules

New satellite implemented by replacing either GEO module "access_geo" or LEO module "access_leo"

program **geo_leo_intercal_ir** [variable definition] geo, leo, colloc

call open_geo(geo, GeoFile) call get_geo_radiance(geo)

call open_leo(leo, LeoFile)

call get_leo_data(leo, rc)

call colloc_geo_leo(geo, leo, colloc)

call get_simgeo_convolution(geo,leo,colloc)

call get_simgeo_constrain(geo,leo,colloc)

call output(geo, leo, colloc)

call close_geo(geo)

call close_leo(leo)

call destroy_geo(geo)

call destroy_leo(leo)

call destroy_colloc(colloc)

call destroy_simgeo_***(

module common_constants

Basic constants defined

module access_geo

- Definition of GEO data structure
- Subroutines to open/close GEO, get GEO data, deallocate arrays

module access_leo

- Definition of LEO data structure
- Subroutines to open/close LEO, get LEO data, deallocate arrays

module collocate_geo_leo

- Definition of collocation data structure
- Subroutines to collocate GEO-LEO, deallocate arrays

module simulate_georad_convolution module simulate_georad_constrain

 Subroutines to estimate GEO radiances from LEO data, deallocate arrays

module (output)

Subroutine to write out results

FY-2C/2D L1 HDF

FY-2C/2D VISSR SRF

Collocation Method

• Observation time difference check

 $|t_{FY2} - t_{sounder}| < dt_{max}$ (<15 mins)

• Satellite zenith angle difference check

 $|\cos(SZA_{sounder}) / \cos(SZA_{FY2}) - 1| < MaxRate_OptPathDiff$

• Environment uniformity check

STDV(FY2 DNs in ENV_BOX) < MaxSTDV ()

• Normality check

| MEAN(FOV_BOX) – MEAN(ENV_BOX) $| \times 9 /$ STDV(ENV_BOX) < Gaussian

FY2C Collocation Image with AIRS(20080510-1800)

Linear Regression between FY2C DN and AIRS Radiance

Calibration LUT comparison from FY-2C L1B and AIRS intercal

FY-2C Tbb Bias with AIRS for longterm

FY-2C Tbb Bias with AIRS for longterm

FY-2C Tbb bias with AIRS at reference Temperature 250k Tbb Bias with AIRS collocation 4 2 0 -2 IR1 IR2 -4 IR3 1100 1150 1200 1250 1350 1400 145 1050 1300 Jday sinceFY-2C IR Open

FY-2C Tbb Bias with AIRS for longterm

FY-2C Tbb bias with AIRS at reference Temperature 220k

FY-2C GSICS Intercal Slope for long term

FY-2C GSICS intercal Result comparison with L1B (IR1)

FY-2C GSICS Intercal Slope for long term

FY-2C Tbb Bias and intercal slope with AIRS for one year

Comparison between FY-2D L1 Cal

FY-2D Tbb Bias with AIRS for longterm

FY-2D Tbb Bias with AIRS for longterm

FY-2D Tbb Bias with AIRS for longterm

FY-2D GSICS Intercal Slope for long term

FY-2D GSICS Intercal Slope for long term

FY-2D GSICS intercal Result comparison with L1B (IR3)

Mechanism analysis of FY-2C IR calibration coefficient drift trend

Mechanism analysis of FY-2C IR calibration coefficient drift trend

BTD Anomaly on FY-2C/2D

- Anomaly on Split window Brightness Temperature Difference (BTD) of FY-2C/2D L1B was found, especially at cool targets (Deep convective cloud)
- Some reasons from our analysis
 - Straylight contamination
 - MTF difference of these two bands
 - Low sensitivity of sensors at cool targets (<220K)
 - Nonlinear Calibration error
- Expect some BTD improvements for FY-2X calibration from GSICS inter-calibration using AIRS and IASI hyper spectral data.

FY-2C BTD comparison with AIRS

Linear Regression intercalibration BTD Result

FY-2C BTD comparison with AIRS

FY-2D BTD comparison with AIRS

Intensive discussion: GSICS Geo-Leo spatial Collocation for cloud target

- Higher Tbb bias was found from MTSAT and FY-2C/2D
- High Cloud target maybe affected on the GEO-LEO spatial Collocation
- Should we pay attention to the Height correction of Cool could be considered

Higher Tbb bias was found from FY-2C/2D

Higher Tbb bias was found from MTSAT

MTSAT-1R IR2 vs. METOP-A/IASI 01 May 2008 to 31 May 2008

Near Future Plan

- Operation routinely of GSICS algorithm for FY-2C/2D/2E based on AIRS inter-calibration
- Experimental operation based on IASI and its results will be intercompared with the results based on AIRS
- Web-based release of FY-2X GSICS results of all lifetime
- Straylight and MTF correction will be conducted deeply
- FY-3A/MERSI/VIRR/IRAS LEO-LEO inter-calibration with MODIS, AIRS and IASI routinely

Timetable of Actions to Implement GSICS Plan in CMA

Action	Responsibility	Target Date
Realize FY-2C/2D GSICS into routinely operation	NSMC	06/31/2009
Create and Open CMA GPRC web site	NSMC	06/31/2009
Establish a near real-time monitoring system of instrument performance of FY serial sensors	NSMC	12/31/2009
Establish calibration data sharing platform for FY serial sensors including SNO data, global reference Sites Images and OBC data	NSMC	12/31/2010
Recalibration for the FY-1C/1D retrospectively	NSMC	06/31/2010